摘要/Abstract
摘要: 将抛物化稳定性方程(PSE)方法应用到可压缩单股剪切混合流的稳定性研究中。采用并发展了适用于自由剪切流的高精度数值方法,包括六阶紧致格式、坐标变换以及渐近边界条件等,对PSE进行有效求解。通过求解相似边界层方程得到更准确的剪切层内基本流;求解线性稳定性理论(LST)控制方程得到扰动的初始条件,并通过流向空间推进方法对扰动的空间不稳定性进行求解。计算并分析了在不同马赫数和温度比情况下,不同频率、波数等参数的扰动波线性发展过程。计算结果表明:在弱压缩性情况下,二维扰动最不稳定,随着压缩性增强三维扰动变得比二维扰动更不稳定,对流动不稳定性起主导作用;在流动的上游,温度比的增加对流动起稳定作用,而在下游,温度比的增加起不稳定作用;当频率增加或波角增大时,扰动的流向不稳定区减小;PSE方法是单股剪切混合流稳定性快速有效的分析方法。
关键词:
单股剪切混合流,
可压缩,
线性稳定性理论,
抛物化稳定性方程,
紧致格式
Abstract: A study of the stability of the compressible single-stream shear mixing layers is performed by using parabolized stability equations (PSE). Associated high accuracy numerical methods are adopted and developed for the free shear layer to solve the parabolized stability equations effectively, including a sixth order compact scheme, algebraic transformation, gradual boundary conditions, etc. Similar boundary layer equations are solved to obtain more accurate basic flow in the shear layers; initial conditions of disturbances are achieved by solving equations of linear stability theory (LST); the spatial stability of disturbances are resolved through streamwise marching methods. The linear evolutions of disturbances with different frequencies and wave numbers at different Mach numbers and temperature ratios are computed and analyzed. The results demonstrate that, 2D disturbances are most unstable under weak compressibility conditions; 3D disturbances become more unstable than 2D ones with the increase of compressibility and dominate the flow instability; temperature ratio has a stabilizing effect at the upstream area, but destabilizing effect downstream; the streamwise instable area becomes smaller when the frequency becomes higher or when the wave angle becomes larger. The study proves that the PSE methods are effective for the stability analysis of single-stream shear mixing layers.
Key words:
single-stream shear mixing layer,
compressibility,
linear stability theory,
parabolized stability equation,
compact scheme
中图分类号:
V211.3
引用本文
郭欣, 王强. 基于PSE的单股剪切混合流稳定性分析[J]. 航空学报, 2011, 32(8): 1411-1420.
GUO Xin, WANG Qiang. Stability Analysis of Single-stream Shear Mixing Layer Based on Parabolized Stability Equations[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011, 32(8): 1411-1420.
使用本文
/
推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文:
https://hkxb.buaa.edu.cn/CN/CNKI:11-1929/V.20110316.1333.004
https://hkxb.buaa.edu.cn/CN/Y2011/V32/I8/1411
参考文献
[1] Jackson T L, Grosch C E. Inviscid spatial stability of a compressible mixing layer. Part 3 effect of thermodyna-mics[J]. Journal Fluid Mechanics, 1991, 224: 159-175.[2] Morris S C, Foss J F. Turbulent boundary layer to single-stream shear layer: the transition region[J]. Journal Fluid Mechanics, 2003, 494: 187-221.[3] 罗纪生, 吕祥翠. 超声速混合层稳定性分析及增强混合研究[J]. 力学学报, 2004, 36(2): 202-207. Luo Jisheng, Lu Xiangcui. The stability analysis and mixing strengthen of supersonic mixing layer[J]. Acta Mechanica Sinica, 2004, 36(2): 202-207. (in Chinese)[4] Shalaev I, Tumin A. Stability of three dimensional mixing layers. AIAA-2006-3382, 2006.[5] 沈清, 杨晓辉, 张涵信. 二维超声速混合层流动稳定性的数值分析与并行计算[J]. 空气动力学报, 2002, 20(z1): 27-33. Shen Qing, Yang Xiaohui, Zhang Hanxin. Numerical analysis and parallel computation of the flow stability in two-dimensional supersonic mixing layer[J]. Acta Aerodynamica Sinica, 2002, 20(z1): 27-33. (in Chinese)[6] 倪慧, 罗纪生, 何立忠. 三维可压缩混合层中扰动演化的研究[J]. 空气动力学报, 2004, 22(4): 416-421. Ni hui, Luo Jisheng, He Lizhong. The evolution of disturbances in three-dimensional compressible mixing layer[J]. Acta Aerodynamica Sinica, 2004, 22(4): 416-421. (in Chinese)[7] Bertolotti F P, Herbert T. Spalart P R. Linear and nonlinear stability of the Blasius boundary layer[J]. Journal Fluid Mechanics, 1992, 242: 441-474.[8] Herbert T. Parabolized stability equations[J]. Annual Review of Fluid Mechanics. 1997, 29: 245-283.[9] Liu J X, Tang D B, Yang Y Z. On nonlinear evolution of C-type instability in nonparallel boundary layers[J]. Chinese Journal of Aeronautics, 2007, 20(4): 313-320.[10] Cheung L C, Lele S K. Acoustic radiation from subsonic and supersonic mixing layers with nonlinear PSE. AIAA-2004-363, 2004.[11] Gaitonde D V, Visbal M R. High-order schemes for Navier-Stokes equations algorithm and implementation into FDL3DI. AFRL-VA-WP-TR-1998-3060, 1998.[12] Mack L M. Boundary-layer linear stability theory//Special Course on Stability and Transition of Laminar Flow. AGARD Report No. 709, 1984, 3: 1-81.[13] Tadepalli S, Ferziger J H. Efficient eigenvalue search method for hypersonic boundary layer stability. AIAA-1996-670, 1996.[14] Balakumar P. Evolution of disturbances in three-dimensional boundary layers. AIAA-2000-145, 2000.[15] Chang C L, Malik M R. Linear and nonlinear PSE for compressible boundary layers. ICASE Report 93-70, 1993.[16] Day M J. Structure and stability of compressible reacting mixing layer. Stanford: Stanford University, PhD thesis, CA 94305, 1999.[17] 王强, 傅德薰, 马延文. 粘性可压混合层时间稳定性对称紧致差分求解[J]. 计算力学学报, 2002, 19(1): 1-6. Wang Qiang, Fu Dexun, Ma Yanwen. The computation of compressible mixing layer viscous temporal stabilities using symmetry compact scheme[J]. Chinese Journal of Computational Mechanics, 2002, 19(1): 1-6. (in Chinese)[18] Sandham N, Reynolds W. The compressible mixing layer linear theory and direct simulation. AIAA-1989-371, 1989.
相关文章 15
[1]
吴文昌, 马燕凯, 韩省思, 闵耀兵, 燕振国. 一种光滑型TENO非线性加权的WCNS格式[J]. 航空学报, 2024, 45(8): 129052-129052.
[2]
汪洪波, 曾宇, 熊大鹏, 杨揖心, 孙明波. SST湍流模型的激波与可压缩效应改进[J]. 航空学报, 2024, 45(3): 128694-128694.
[3]
熊有德, 李创创, 张振辉, 吴杰. 高超声速风洞自由来流扰动热线测量技术[J]. 航空学报, 2024, 45(10): 129042-129042.
[4]
傅亚陆, 袁先旭, 刘朋欣, 余明. 可压缩壁湍流热力学量统计特性分析[J]. 航空学报, 2023, 44(9): 127217-127217.
[5]
曾宇, 汪洪波, 孙明波, 王超, 刘旭. SST湍流模型改进研究综述[J]. 航空学报, 2023, 44(9): 27411-027411.
[6]
张子佩, 赵钟, 陈坚强, 刘健, 邓小兵. 风雷软件LES开发设计与验证[J]. 航空学报, 2023, 44(6): 127171-127171.
[7]
许开龙, 刘再刚, 姜胜利, 王星, 张磐. 指定流量分配系数的多回流出口边界算法[J]. 航空学报, 2023, 44(5): 126830-126830.
[8]
魏皇生, 黄柱, 席光. 一种基于幅值和波数的耗散控制方法[J]. 航空学报, 2023, 44(4): 126589-126589.
[9]
朱博, 廖达雄, 陈振华, 陈吉明. 跨声速流场扰动模态与湍流度精细测量[J]. 航空学报, 2023, 44(4): 126378-126378.
[10]
王宇天, 刘建新, 王晓坤, 李晓明. 多孔壁面对高速边界层最优增长条带二次失稳的影响规律[J]. 航空学报, 2023, 44(22): 128519-128519.
[11]
施方成, 高振勋, 田雨岩, 蒋崇文, 王田天, 李椿萱. 超声速理想膨胀喷流噪声的大涡模拟[J]. 航空学报, 2023, 44(2): 626266-626266.
[12]
胡姝瑶, 蒋崇文, 李椿萱. 可压缩流动模拟的多重网格-扰动域推进方法[J]. 航空学报, 2023, 44(11): 127649-127649.
[13]
刘清扬, 雷娟棉, 刘周, 石磊, 周伟江. 适用于可压缩流动的γ-Reθt-fRe转捩模型[J]. 航空学报, 2022, 43(8): 125794-125794.
[14]
聂晗, 宋文萍, 韩忠华, 陈坚强, 段茂昌, 万兵兵. 面向超声速民机层流机翼设计的转捩预测方法[J]. 航空学报, 2022, 43(11): 526342-526342.
[15]
徐家宽, 王玉轩, 张扬, 乔磊, 刘建新, 白俊强. 亚跨声速边界层增长因子输运模式研究进展[J]. 航空学报, 2022, 43(11): 526734-526734.
编辑推荐
Metrics
阅读次数
全文
摘要
本文评价